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- Road accidents are
i one of the most critical
- priorities for managing road
=t traffic around the world. This
leads  several automobile
a associations, research institute
and manufacturers to invent
and implement safety systems
to prevent the drivers sleepy.

One of safety systems has

People been reached is using heart
Innovation rate  data to  detect
Excellence drowsiness level.

IDENTIFYING DROWSY DRIVER
BY USING HEART RATE
DETECTION WITH DEEP
LEARNIN
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Electrocardiography (ECG) is one the most common methods to
measure the heart rate of patients and gives the most accurate result to
be obtained in some research. That data will be training and testing
source to be modelled on well-know combined forward and back
propagation deep learning, which is CNN-GRU.

Isuru et al (2019) used CNN-GRU to classify the level of sleepiness of healthy subjects and
clinical patient subjects. The subjects were taken pulse activity from electroencephalography (EEG)
and electrooculography (EOG) devices, which achieved an overall accuracy of 89.3% with a fi-score of
0.89 for healthy subjects, and 0.92 for clinical patient subjects.

Clemens Brunner and Florian Hofer (2023) created SleepECG with GRU-based model to
classify drowsiness, with achievement 83% of accuracy to classify wake-sleep state for every patient.
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The proposed model has exceeded the previous Kappa coefficient and F1 score
comparing to CNN model from Malik et al (2018) and GRU from Brunner and Hafor
(2023). However, the result from Google Colab has slight lower value for accuracy from
both model. It will be an opposite if MixSleepNet from Ji et al (2024) is compared. The
Kappa and Fi-score are better than the proposed model, which are 0.757, 90.8% for
sleep score, and 81.3% for wake score. This happened due to the structure of the model
has developed graphic learning layer and pseudo 3D convolution layer three times.
Meanwhile, CNN-GRU is just simple one-dimensional convolutional layer with bi-
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The accuracy and Kappa values of CNN-GRU with edge computing are competitive if
compared with CPU and A100. Those reached 81,78% and 0.594. Meanwhile, the
accuracy and Cohen's Kappa values of GRU reached 76.20% and 0.4749. These results
are very different when the data is trained using MESA. Although, it has some work to
improve Fi-score for percentage of “Wake"” stage, which only reach 71% compared to
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Drowsiness is a problem that must be overcome to improve safety when driving a vehicle. To
overcome this problem, a driving monitoring system is a solution applied in driving a vehicle. One of
the monitoring systems used is to rely on ECG data from the driver to detect drowsiness. To optimize
data from the ECG, the data is extracted into HRV (heart rate variability) data and modeled in the form
of a deep learning model. One of the deep learning models used is CNN-GRU. This model provides
higher accuracy and Kappa coefficient (82.88%; 0.6014) compared to the GRU model (79.32%,
0.5461) designed by Brunner and Hafor (2023). In addition, CNN-GRU also has a design that can
reduce RAM usage from 8.1 GB to 7.4 GB and power usage on the GPU from 62.21 Watts to 45.41
Watts. Thus, the CNN-GRU model can provide RAM and power efficiency with better accuracy and
Kappa coefficient compared to the GRU model.

Although it has the potential to increase accuracy and Cohen's Kappa values, CNN-GRU
needs to be further developed to have higher Kappa, precision, and F1 Score values compared to
several models that can classify 5 levels of sleepiness, such as MixSleepNet, CoSleepNet, and LSTM-
Ladder Network. CNN-GRU development can be done by using:

1. Larger datasets for training and testing, such as SleepEDF, ISRUC-Sleep, DRM-SUB, and other
accessible datasets,

2.  Larger stride and padding structures with padding values that are not limited to zero padding,

3. Improved filter values on CNN and adjusted to the dimensions of the dataset entered before
processing and have more compact/smaller dimensions, and

4. Using two-dimensional/more scales to process data with deep learning models.
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